综合智慧能源 ›› 2024, Vol. 46 ›› Issue (5): 1-11.doi: 10.3969/j.issn.2097-0706.2024.05.001

• 5G通信环境及数据检测 •    下一篇

基于5G通信时延的配电网馈线自动化切换方法

朱卫卫1(), 朱清1(), 高文森1(), 刘财华2(), 王录泽3,*(), 刘增稷3()   

  1. 1.国网新疆电力有限公司,乌鲁木齐 830063
    2.国电南瑞科技股份有限公司,南京 211106
    3.南京邮电大学 自动化学院 人工智能学院,南京 210023
  • 收稿日期:2024-03-22 修回日期:2024-04-18 出版日期:2024-05-25
  • 通讯作者: *王录泽(1998),男,硕士生,从事智能配电网技术等方面的研究,w18151688331@163.com
  • 作者简介:朱卫卫(1984),男,高级工程师,从事电网调度运行等方面的研究,zhuweiweimail@126.com
    朱清(1984),男,高级工程师,硕士,从事电网调度运行等方面的研究,83510638@qq.com
    高文森(1990),男,工程师,硕士,从事电网调度运行等方面的研究,1455672752@qq.com
    刘财华(1986),男,高级工程师,从事电力工程技术等方面的研究,362241852@qq.com
    刘增稷(1993),男,讲师,博士,从事电力信息物理系统网络安全等方面的研究,liuzengji_njupt@163.com
  • 基金资助:
    国家自然科学基金项目(62073173)

Switching method for distribution network feeder automation system based on 5G communication delay

ZHU Weiwei1(), ZHU Qing1(), GAO Wensen1(), LIU Caihua2(), WANG Luze3,*(), LIU Zengji3()   

  1. 1. State Grid Xinjiang Electric Power Company Limited,Urumqi 830063,China
    2. NARI Technology Company Limited,Nanjing 211106,China
    3. College of Automation & College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2024-03-22 Revised:2024-04-18 Published:2024-05-25
  • Supported by:
    National Natural Science Foundation of China(62073173)

摘要:

针对5G通信不确定时延导致数据传输时间难以预测,从而影响馈线自动化(FA)系统故障响应及时性和决策准确性的问题,提出一种基于5G通信时延的配电网FA切换方法。首先,建立馈线终端之间的拓扑关系,根据FA系统中每一分支的最大通信时延计算得到FA系统的实时通信时延;其次,针对不同时延下不同FA策略故障处理速度的历史数据,通过层堆叠长短时记忆神经网络(LSTM)模型进行训练,学习出不同通信时延下故障处理速度最快的FA策略;最后,根据层堆叠LSTM模型的学习结果,选择切换到当前通信时延下故障处理速度最快的FA策略。试验结果表明:该方法能有效应对5G通信的不确定性时延对FA系统的影响,保障FA系统可靠运行;此外,与其他机器学习方法相比,层堆叠LSTM模型在预测准确性和预测时延方面具有优势,能够有效提高馈线终端系统的自适应能力和故障响应速度。

关键词: 馈线自动化, 5G通信, 通信时延, 层堆叠LSTM, 故障处理, 机器学习, 智能配电网

Abstract:

Since data transmission time is difficult to predict due to the uncertain delay of 5G communication, the fault response timeliness and decision-making accuracy of a feeder automation (FA) system are affected. Thus, a distribution network FA switching method based on 5G communication delay is proposed. Initially, the topological relationship between feeder terminals is established, and the real-time communication delay of the FA system is calculated based on the maximum communication delay in each branch of the FA system. Subsequently, a stacked Long Short-Term Memory (LSTM) neural network model is trained by the historical data of fault processing time under different FA strategies and various delays, to obtain the FA strategies with the fastest fault handling speed under different communication delays. Finally, based on the learning outcomes of the layer-stacked LSTM model, the FA strategy with the shortest fault handling time under a certain communication delay is selected. Experimental results demonstrate that the proposed method effectively mitigates the impact of uncertain delays in 5G communication on FA systems, ensuring their reliable operation. Moreover, compared to other machine learning methods, the layer-stacked LSTM model shows advantages in prediction accuracy and prediction delay, effectively enhancing the adaptive capacity and fault response speed of feeder terminals.

Key words: feeder automation, 5G communication, communication delay, layer-stacked LSTM, fault processing, machine learning, intelligent distribution network

中图分类号: